RAINWATER HARVESTING

Rainwater harvesting (RWH) is the collection and storage of rain, rather than allowing it to run off. Rainwater is collected from a roof-like surface and redirected to a tank, cistern, deep pit (well, shaft, or borehole), aquifer, or a reservoir with percolation, so that it seeps down and restores the ground water. Dew and fog can also be collected with nets or other tools. Rainwater harvesting differs from stormwater harvesting as the runoff is collected from roofs, rather than creeks, drains, roads, or any other land surfaces. Its uses include watering gardens, livestock, irrigation, domestic use with proper treatment, and domestic heating. The harvested water can also be committed to longer-term storage or groundwater recharge.

Rainwater harvesting is one of the simplest and oldest methods of self-supply of water for households, and residential and household-scale projects, usually financed by the user. However, larger systems for schools, hospitals, and other facilities can run up costs only able to be financed by owners, organizations, and governmental units.

Advantages

Rainwater harvesting provides the independent water supply during regional water restrictions, and in developed countries, it is often used to supplement the main supply. It provides water when a drought occurs, can help mitigate flooding of low-lying areas, and reduces demand on wells which may enable groundwater levels to be sustained. It also helps in the availability of potable water, as rainwater is substantially free of salinity and other salts. Applications of rainwater harvesting in urban water system provides a substantial benefit for both water supply and wastewater subsystems by reducing the need for clean water in water distribution systems, less generated stormwater in sewer systems,and a reduction in stormwater runoff polluting freshwater bodies.

A rainwater harvesting system that could be easily installed and maintained by local people

A large body of work has focused on the development of life cycle assessment and its costing methodologies to assess the level of environmental impacts and money that can be saved by implementing rainwater harvesting systems.

Independent water supply

Rainwater harvesting provides an independent water supply during water restrictions. In areas where clean water is costly, or difficult to come by, rainwater harvesting is a critical source of clean water. In developed countries, rainwater is often harvested to be used as a supplemental source of water rather than the main source, but the harvesting of rainwater can also decrease a household’s water costs or overall usage levels. Rainwater is safe to drink if the consumers do additional treatments before drinking. Boiling water helps to kill germs. Adding another supplement to the system such as a first flush diverter is also a common procedure to avoid contaminants of the water.

Supplemental in drought

When drought occurs, rainwater harvested in past months can be used. If rain is scarce but also unpredictable, the use of a rainwater harvesting system can be critical to capturing the rain when it does fall. Many countries with arid environments, use rainwater harvesting as a cheap and reliable source of clean water. To enhance irrigation in arid environments, ridges of soil are constructed to trap and prevent rainwater from running downhills. Even in periods of low rainfall, enough water is collected for crops to grow. Water can be collected from roofs and tanks can be constructed to hold large quantities of rainwater.

In addition, rainwater harvesting decreases the demand for water from wells, enabling groundwater levels to be further sustained rather than depleted.

Life-cycle assessment

Life-cycle assessment is a methodology used to evaluate the environmental impacts of a system from cradle-to-grave of its lifetime. Devkota et al,developed such a methodology for rainwater harvesting, and found that the building design (e.g., dimensions) and function (e.g., educational, residential, etc.) play critical roles in the environmental performance of the system.

To address the functional parameters of rainwater harvesting systems, a new metric was developed – the demand to supply ratio (D/S) – identifying the ideal building design (supply) and function (demand) in regard to the environmental performance of rainwater harvesting for toilet flushing. With the idea that supply of rainwater not only saves the potable water but also saves the stormwater entering the combined sewer network (thereby requiring treatment), the savings in environmental emissions were higher if the buildings are connected to a combined sewer network compared to separate one.

Cost-effectiveness

Although standard RWH systems can provide a water source to developing regions facing poverty, the average cost for an RWH setup can be costly depending on the type of technology used. Governmental aid and NGOs can assist communities facing poverty by providing the materials and education necessary to develop and maintain RWH setups.

Some studies show that rainwater harvesting is a widely applicable solution for water scarcity and other multiple usages, owing to its cost-effectiveness and eco-friendliness. Constructing new substantial, centralized water supply systems, such as dams, is prone to damage local ecosystems, generates external social costs, and has limited usages, especially in developing countries or impoverished communities. On the other hand, installing rainwater harvesting systems is verified by a number of studies to provide local communities a sustainable water source, accompanied by other various benefits, including protection from flood and control of water runoff, even in poor regions. Rainwater harvesting systems that do not require major construction or periodic maintenance by a professional from outside the community are more friendly to the environment and more likely to benefit the local people for a longer period of time.Thus, rainwater harvesting systems that could be installed and maintained by local people have bigger chances to be accepted and used by more people.

The usage of in-situ technologies can reduce investment costs in rainwater harvesting. In-situ technologies for rainwater harvesting could be a feasible option for rural areas since less material is required to construct them. They can provide a reliable water source that can be utilized to expand agricultural outputs. Above-ground tanks can collect water for domestic use; however, such units can be unaffordable to people in poverty.

Limitations

Rainwater harvesting is a widely used method of storing rainwater in the countries presenting with drought characteristics. Several pieces of research have derived and developed different criteria and techniques to select suitable sites for harvesting rainwater. Some research was identified and selected suitable sites for the potential erection of dams, as well as derived a model builder in ArcMap 10.4.1. The model combined several parameters, such as slope, runoff potential, land cover/use, stream order, soil quality, and hydrology to determine the suitability of the site for harvesting rainwater.

Harvested water from RWH systems can be minimal during below-average precipitation in arid urban regions such as the Mideast. RWH is useful for developing areas as it collects water for irrigation and domestic purposes. However, the gathered water should be adequately filtered to ensure safe drinking.

Quality of water harvesting

Rainwater may need to be analyzed properly, and used in a way appropriate to its safety. In the Gansu province, for example, solar water disinfection is used by boiling harvested rainwater in parabolic solar cookers before being used for drinking.These so-called “appropriate technology” methods provide low-cost disinfection options for treatment of stored rainwater for drinking.

While rainwater itself is a clean source of water, often better than groundwater or water from rivers or lakes,the process of collection and storage often leaves the water polluted and non-potable. Rainwater harvested from roofs can contain human, animal and bird feces, mosses and lichens, windblown dust, particulates from urban pollution, pesticides, and inorganic ions from the sea (Ca, Mg, Na, K, Cl, SO4), and dissolved gases (CO2, NOx, SOx). High levels of pesticide have been found in rainwater in Europe with the highest concentrations occurring in the first rain immediately after a dry spell; the concentration of these and other contaminants are reduced significantly by diverting the initial flow of run-off water to waste. Improved water quality can also be obtained by using a floating draw-off mechanism (rather than from the base of the tank) and by using a series of tanks, withdraw from the last in series. Prefiltration is a common practice used in the industry to keep the system healthy and ensure that the water entering the tank is free of large sediments.



A very interesting concept of rainwater harvesting and cleaning it with solar energy for rural household drinking purposes has been developed by Nimbkar Agricultural Research Institute.

Conceptually, a water supply system should match the quality of water with the end-user. However, in most of the developed world, high-quality potable water is used for all end uses. This approach wastes money and energy and imposes unnecessary impacts on the environment. Supplying rainwater that has gone through preliminary filtration measures for non-potable water uses, such as toilet flushing, irrigation, and laundry, maybe a significant part of a sustainable water management strategy.